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Abstract—Power distribution infrastructure is being 

harmed by the advent of nonlinear devices, which cause 

harmonics to enter into the power system networks and 

distort the voltage and current signals. Shunt Active Power 

Filter (SAPF) is a new power electronics-based technology 

that can reduce harmonics and improve the power quality 

in distribution networks. This research provides an efficient 

and inexpensive strategy to minimizing harmonics and 

improving the power quality in power distribution networks 

by employing Shunt Active Power Filter’s (SAPF), which 

uses the Particle Swarm Optimized Artificial Neural 

Network Controller (PSO-ANN). The goal of the PSO-ANN 

algorithms have been developed for SAPF is to improve 

system performance by lowering the amount of Total 

Harmonic Distortion (THD). In this work, the standard PI 

controller is initially tuned using the PSO algorithm to 

obtain the optimal gain values (Ki, Kp) for the PI controller. 

After that, these values of the PSO-PI controller's input and 

output will serve as a dataset for the ANN controller. Now, 

the PSO algorithm is being used to tune this ANN controller 

in order to acquire the optimal values for the weight and 

bias. Using the MATLAB/SIMULINK tool, the proposed 

algorithm's performance is evaluated and compared to that 

of a PSO-PI based SAPF and the conventional PI based 

SAPF. The results of the simulation demonstrate that a 

SAPF which is based on a PSO-ANN controller is capable of 

achieving superior THD in the drawing source current while 

maintaining minimum levels and which are acceptable in 

accordance with the IEEE-519 standard for harmonics.  

Index Terms—ANN-controller tuning, particle swarm 

optimization algorithm, PI-controller tuning, power quality, 

shunt active power filter, total harmonic distortion  

I. INTRODUCTION 

Harmful harmonic currents are produced at the Point 

of Common Coupling (PCC) due to the usage power 

electronics devices and non-linear load in huge quantities 

[1]. Because of the many issues that can arise from 

distribution system current harmonics, loss, instability, 

noises, heating appliances, etc. It would be preferable to 

reduce their risk and bring them down to an acceptable 
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level, as specified by the IEEE-519 standards for Total 

Harmonic Distortion (THD) [2]. 
To reduce current harmonics, compensate for reactive 

power, and improve power factor, a Shunt Active Power 
Filter (SAPF) could be the solution. Fig. 1 (next page) 
depicts the SAPF setup, this consists of the active filter 
controller as well as the Voltage Source Inverter (VSI). In 
order to achieve the desired result of injecting a 
controlled compensating current into the power system, 
the VSI requires instantaneous adequate firing signals 
from the control unit [3, 4]. The reactive power control to 
the grid is supplied by the DC-link capacitor employed on 
the front side of the VSI [5]. In order to connect the DC 
component to the three-phase power distribution system, 
a VSI is necessary. To reduce the amount of distortion in 
the source current, VSI injects a compensating current in 
response to the firing signals [6]. 

To analyze the VSI switching operation, either 
reference generating methods or control techniques are 
used. The SAPF control techniques are able to be 
implemented in two steps, which are as follows: first, by 
using reference current generation theories to extract 
compensating signals from distorted signals, and then, by 
using signal estimated reference methods to produce 
appropriate firing signals for the purpose of controlling 
the SAPF switching devices [7]. Several writers have 
compared SAPF control techniques ([8, 9]). 

The PI-controller, which is an integral aspect of 
reference current theory, is responsible for minimizing 
the impact of harmonics. Ki and Kp gain settings of the 
PI-controller need to be properly tuned in order to obtain 
the best possible results. The traditional approach for 
tuning the gains of the PI-controller utilizes linear 
modeling, which ultimately results in a less-than-optimal 
setting for the gains [10, 11]. Consequently, PI-controller 
tuning makes use of a variety of different metaheuristic 
optimization strategies. There are a variety of control 
methods that can lower current harmonics and introduce 
the converter to brand new opportunities [12]. Consider, 
for example, the Particle Swarm Optimization (PSO) 
[13−17] method and Genetic algorithm (GA) [18]. 

Artificial Neural Network (ANN) is a network that is 

set up and works in a way that is similar to how the 

human brain works. To simply stated, the brain is a 

network of cells called neurons. The behavior of the 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

279doi: 10.18178/ijeetc.12.4.279-287



whole network depends on how strong the connections 

between interneuron’s are and how they are set up. 

During the training of the network, the weights are 

changed and tweaked [19]. At the moment, Artificial 

Neural Network (ANN) techniques are only used on 

SAPF for producing reference compensation current, 

which is used to control the compensation that SAPF 

gives [20, 21]. Learning weights can be accomplished in 

a variety of techniques [22]. Some examples include the 

Widrow-Hoff (W-H) approach, the Steepest Descent 

method of variable learning, the Levenberg-Marquardt 

method, and others. 

 
Fig. 1. Basic elements of the shunt active power filter. 

 
Fig. 2. SAPF controller configuration. 

This work uses the concepts of instantaneous active 

and reactive power to derive the reference current (PQ-

theory). Hysteresis current controller technique, as shown 

in Fig. 2 [23], estimates reference currents to provide 

necessary gating pulses. For optimum performance of a 

PQ-theory based ANN-controller for a dc-link voltage 

requires fine-tuning of weight and bias values. For the 

optimum ANN-controller weight and bias particle swarm 

optimization algorithm is implemented in order to 

identify its optimal state. 

II. PQ THEORY 

In the case of three-phase, three-wire systems that have 

sinusoidal and balanced source voltages, a PQ-theory-

based constant instantaneous power control approach has 

been developed. The instantaneous power is calculated by 

sensing the source voltage (Va, Vb, Vc) and load current 

(Ila, llb, Ilc) and transforming them using Clarke 

transformation into (α, β) components. Error signal is 

derived from reference and measured dc-link voltages, 

then introduced to PI or ANN controller to obtain power 

losses component of dc-link voltage (Ploss). As illustrated 

in Fig. 3 (next page) [24], the reference current signals 

are obtained by inverting the components (α, β) with the 

real and reactive power by use of the inverse Clarke 

transformation (α, β to three phase values (Va, Vb, Vc, Ila, 

Ilb, Ilc). 
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Fig. 3. Work flow of PQ theory based reference current generation. 

III. ARTIFICIAL NEURAL NETWORK (ANN) 

The human brain’s structure is built on neural 

networks, hence the terminology “Artificial Neural 

Network” is adopted from the neuroscience area. 

Multiple layers of interactions are present between 

neurons in artificial neural networks, just like the neurons 

in the human brain are connected to each other. These 

nerve cells are called nodes as shown in Fig. 4. A 

nominal neuron is a processing element that, in general, 

possesses one or more outputs and n inputs (x1, x2,, xn) 

which are the independent inputs or outcomes of the 

different neurons. Fig. 5 provides a visual representation 

of these inputs and outputs. The neuron begins by 

computing the sum of its inputs, and then it transfers this 

value through its activation function in order to form its 

output, which is indicated by the value Yi [25]. 

,
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j
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where wi,j are the weight of the connection between the 

input neuron and the output neuron, bi is the bias of the 

neuron, xj represents the neuronal input, and f is 

activation function that controls the characteristics of the 

neural network. 

 
Fig. 4. Basic structure of artificial neural network. 

 

Fig. 5. Architecture of the artificial neural network. 

Neural networks adjust to input data by changing 

connection weights (including biases) and sometimes 

layer number and neurons number. 

IV. INTRODUCTION TO PSO  

The comprehensive implementation of PSO algorithm 

starts with the movement of a group of possible random 

solutions, which are represented in the form of moving 

particles in inside target region. This movement is done 

in order to find the optimal solution. Every one of the 

nearby particles that are being assumed has some a speed 

as well as a selective memory, which enables each other 

to recall the position and value that corresponds to their 

optimal level of performance. This is being done by 

taking into account all of the information that is currently 

being taken into account. A predetermined objective 

function that is tied to the problem that needs to be 

resolved [26] is used to evaluate the efficacy of each 

individual particle. The velocity of each particle at 

iteration is determined by linearly combining the velocity 

and position at iteration, as well as the intervals that 

separate the existing position of the particle from its 

preceding best position and finest position, respectively. 

This information is then used to calculate the velocity of 

each particle. This leads to the development of a formula 

for determining the velocity of the particle at the next 

iteration, which is denoted by t+1. The motion of the 
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particles is formalized for us by Eqs. (2) and (3), which 

provide us a representation of the movement of the 

particles. 

( ) ( )

( ) ( )

( )

 

best 1 1

best 2 2

1

           1 1

           1

i

i

i

v t wv t

P t x t c r

G x t c r

= − +

− − − +  

− −  

          (2) 

( ) ( ) ( ) 1i ix t x t v t= − +                                (3) 

where xi is the ith particle position, vi is the ith particle 

velocity, Pbest is particle best position, Gbest is target 

position, w is coefficient of inertia, c1 and c2 are 

coefficients of acceleration, and r1 and r2 are values at 

random between 0 and 1. 

Iterate (2) and (3) until convergence is achieved [27]. 

V. PROPOSED IMPLEMENTATION 

A. PSO Tuned PI Controller 

The primary function of SAPF is dependent on DC 

link voltage regulation, which is controlled by standard PI 

controller. This controller requires a great deal of 

mathematical calculation, and it is possible that it will not 

produce optimal gain values for kp and ki. With the help 

of the PSO algorithm, we can determine the optimal 

values for kp and ki. 

The actual dc voltage as compared to the reference dc 

voltage and the error that will be fed to the PSO-PI 

controller can be seen in the Fig. 6. The Integral Absolute 

Error (IAE) is the objective function that needs to be 

minimized with the help of the PSO algorithm in order to 

obtain the optimal gain values. The parameters for the 

PSO are specified in the Table I. 

 
Fig. 6. DC voltage regulation of SAPF with PSO-PI controller. 

TABLE I: PSO PARAMETERS 

Maximum iterations 1000 

Total Population 50 

 Weight of Inertia 0.89 

Constant of Acceleration (C1) 2 

Constant of Acceleration (C2) 2 

Total Variables 2 

Higher Limit of Ki, Kp 200 

Lower limit of Ki, Kp 0 

Optimum value of Kp 5.65119 

Optimum value of Ki 7.93019 

 

B. PSO Tuned ANN Controller 

The objective of ANN training is to arrive at the most 

accurate possible values for the network’s weights and 

biases. The right values of the ANN's weights and biases 

are determined by the application of a variety of 

methodological approaches. The PSO method was 

utilized in this paper. According to the Fig. 7, the input (e) 

and output of the PSO-PI controller will serve as the 

dataset for the neural network feed forward controller. 

 

Fig. 7. The workspace representation of the PSO-PI controller's input (e) 

and output. 

The Initialization of the neural network code shown in 

below says to get the input and target values from the 

PSO-PI controller, then initialize the hidden neurons are 

10, configure the neural network based on the input and 

output, get the weights and bias of the configured neural 

network, create the objective function as root mean squire 

error, and use the PSO algorithm to fine-tune the weights 

and bias of the pre-trained neural network. 

Initialize the neural network problem 

➢ inputs = e'; 

➢ expects = output'; 

➢ hn = 10;      (number of  hidden neurons) 

➢ Nn = feedforwardnet (hn); 

➢ Nn = configure (Nn, inputs, expects); 

➢ getwb(Nn)     (Getting initial weight and biases) 

➢ Based on weights and bias(y), Nn, inputs, and 

expects, calculate the objective function which is 

root mean square error denoted by (g). 

➢ Train the neural network by applying the PSO 

algorithm .From that we can obtain the updated 

weights, bias (y), and error (e). 

➢ Nn = setwb(Nn, y'); 
➢ getwb(Nn) 
➢ e = expects - Nn (inputs); 
➢ def = mean(e.^2)/mean(var(expects',1)); 
➢ gensim(Nn)   

The algorithm’s operation can be summed up using the 

steps as follows: 

• Initialization at random of all of the local positions Xi 

(weights and biases). 

• Evaluate the fitness function for each initialized 

particle, which is provided by (4), then establish the 

local locations Pi-best and the global positions Gbest. 

( )
2

target actual outputf = −                          (4) 

• Update all Pi-best local positions 

• Assess the current best in the area and the fitness 

function. If (f Pbest) < f (Gbest) then Gbest =Pbest. 

• Using (2) and (3), modify the neural networks' 

weights and biases. 

• The process should end if the stop condition holds 

true. If not, proceed to Step 2 to display the updated 

weights and biases. 
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Fig. 8. Flow chart representation of PSO trained ANN controller. 

Convergence is reached when the synaptic coefficients 

settle on a final value and the network’s Mean square 

error (NMSE) drops below a specified threshold. 

Limiting the number of possible iterations is another way 

to interrupt the learning process. Fig. 8 depicts the 

training algorithm’s flowchart. 

Finally for a given input and an output, we will get the 

feed-forward neural network as shown in Fig. 9, which 

will be replaced by the PSO-PI controller. 

 
Fig. 9. Simulink block of PSO-ANN algorithm. 

TABLE II: SIMULINK MODEL FRAMEWORK 

Specification Values 
Source Voltage 415V 

Source Frequency 50 Hz 
Source Impedance 0.1 ohm, 15mH 

Interfacing impedance 15mH 

Load Real Power 4472 W 
Load Reactive Power 1718 VAR 
DC link Capacitance 100µF 

VI. MODEL CONFIGURATION 

The configuration of the suggested model is shown in 

Fig. 10, which consists of a three-phase power grid 

coupled to a three-phase un-controlled diode rectifier 

coupled to a non-linear load represented by an inductive 

load on the DC side. SAPF with a VSI design and a 

capacitor on the DC link are incorporated into the system 

at the PCC. 

The simulation diagram of a PQ theory-based 

reference control method for SAPF is represented in the 

Fig. 11. Table II contains a listing of the suggested 

model's parameters. 

 
Fig. 10. Simulink model of Grid connected nonlinear load with SAPF.  

 
Fig. 11. Simulink model of PQ theory based SAPF. 
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Fig. 12. The source voltage, source current, compensation current, and load current waveforms without SAPF. 

VII. SIMULATION RESULTS 

The MATLAB simulative environment was used for 
the implementation of the proposed reference generation 
and current control techniques for a SAPF. This research 
was performed in accordance with the following 
scenarios. 

• Without SAPF 

• SAPF with conventional PI controller 

• SAPF with PSO-PI controller 

• SAPF with PSO-ANN controller 

A. Without SAPF 

In this scenario, SAPF is switched off, and a distortion 
in source current induced by a nonlinear load is evaluated 
using Fast Fourier Transform (FFT) analysis, which came 
out to be about 18.42%. Fig. 12 shows the source and 
load current waveforms from the three-phase simulation. 
Fig. 13 shows the source current FFT harmonic spectrum. 

B. SAPF with Conventional PI Controller 

In this scenario, SAPF is linked to the PCC, and the 
results of the simulation are obtained without any 
adjustment to the PI-controller gains. After SAPF 
connection, the supply current distortion is brought down 
to 3.76% of its original value as shown in Fig. 14. 

 

Fig. 13. Grid current THD value of distribution system without SAPF. 

 

Fig. 14. Grid current THD value of distribution system with PI 

controller based SAPF. 

C. SAPF with PSO-PI Controller 

In this particular instance, the simulation was run using 

the SAPF compensation action, and the PSO Algorithm 

was utilized to modify the PI-controller gains. The 

findings that were collected suggest that the THD of the 

source current has been drastically reduced to 0.93%, as 

shown in Fig. 15. 

 
Fig. 15. Grid current THD value of distribution system with PSO-PI 

controller based SAPF. 
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Fig. 16. DC voltage regulation of SAPF by using PSO-ANN controller. 

 
Fig. 17. The source voltage, source current, compensation current, and load current wave forms of PSO-ANN controller based SAPF. 

 

Fig. 18. Grid current THD of distribution system with PSO-ANN controller based SAPF. 

D. SAPF with PSO-ANN Controller 

In this particular instance, The PSO-PI controller is 

replaced by PSO-ANN controller Simulink block which 

was obtained from Fig. 9 Simulink representation with 

feed forward neural network block as shown in Fig 16. 

The findings that were collected suggest that the THD of 

the source current has been drastically reduced to 0.78%. 

The source current, load current, and SAPF 

compensatory current waveforms are depicted in Fig. 17. 

Fig. 18 depicts the source current’s harmonic spectrum. 

Fig. 19 depicts the converging spectrum for PSO-ANN 

controller. 

PSO-ANN parameters are listed in Table III (next 

page). The SAPF performances of all four cases are given 

in Table IV (next page). 
 

Fig. 19. Converges graph for the PSO-ANN controller. 
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TABLE III: PSO-ANN PARAMETERS 

Maximum iterations 5000 

Total Population 50 

Weight of Inertia 0.89 

Constant of Acceleration(C1), (C2) 2 

Hidden Neurons 10 

Total Variables 1 

Higher Limit of weights 200 

Lower limit of weights 0 

TABLE IV: COMPARISON TABLE 

Case 
studies 

FFT -Analysis Parameters THD in % 

1 Without SAPF Grid current 18.42 

2 
SAPF with PI 
controller 

Grid current 3.76 

3 
SAPF with PSO-PI 
controller 

Grid current 0.93 

4 
SAPF with PSO-
ANN controller 

Grid current 0.78 

 

The SAPF performance interns of power factor for all 

four scenarios as follows: Without SAPF, the power 

factor is 0.81, with conventional PI being 0.89, with PSO-

PI being 0.94, and with proposed PSO-ANN being 0.96. 

VIII. CONCLUSION AND FUTURE WORK 

The power quality issues, such as harmonics and 

reactive power, are always expanding and becoming 

more complex. It has been discovered that implementing 

strategies derived from artificial intelligence on active 

filters can produce excellent results in the reduction of 

harmonics and the correction of reactive power. In this 

article, the PSO-ANN control method is proposed for use 

with the SAPF in order to lower the amount of total 

harmonic distortion occurring on the source side of the 

distribution system. The SAPF’s effectiveness in a wide 

range of situations is studied and contrasted. The tool 

MATLAB/SIMULINK is used to perform simulations of 

four distinct scenarios, and the findings are reported. 

According to the results of simulations, both the PSO-PI-

based SAPF and the traditional PI-based SAPF perform 

effective in terms of minimizing THD. It has been found 

that the proposed ANN-PSO-based SAPF is more 

effective in simulation in terms of achieving a lower THD 

value. This improved performance has been determined 

to be acceptable (within 5% of the IEEE standard), 

according to the findings of the investigation.  

In future work, a hardware-in-loop implementation 

will be added to the proposed shunt active filter. Also, an 

ANFIS controller with PSO and other optimization 

methods will be used to make the SAPF's response even 

better. 
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